Independence
- Two events and can be said to be independent if the probability of their intersection is the product of their probability
- "Independent events" should not be confused with "disjoint events", for two disjoint events and
- Example by Julia
using Random
Random.seed!(1)
numbers = 10:25
N = 10^7
first(x) = Int(floor(x/10))
second(x) = Int(x%10)
numThirteen, numFirstIsOne, numSecondIsThree = 0, 0, 0
for _ in 1:N
X = rand(numbers)
global numThirteen += X == 13
global numFirstIsOne += first(X) == 1
global numSecondIsThree += second(X) == 3
end
probThirteen, probFirstIsOne, probSecondIsThree =
(numThirteen, numFirstIsOne, numSecondIsThree) ./ N
println("P(13) = ", round(probThirteen, digits=4),
"\nP(1_) = ", round(probFirstIsOne, digits=4),
"\nP(_3) = ", round(probSecondIsThree, digits=4),
"\nP(1_)*P(3_) = ", round(probFirstIsOne*probSecondIsThree, digits=4))